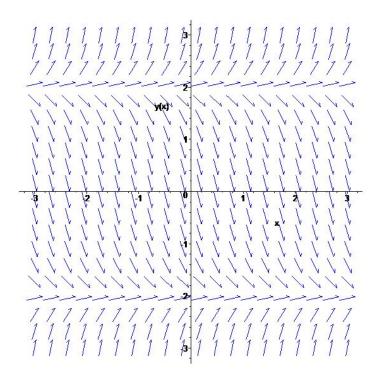

Section 6.2. Direction Fields

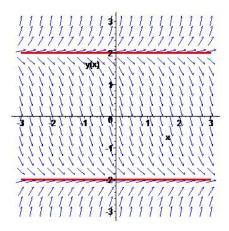
For first-order DEs (but *only* for first-order DEs), we can get a qualitative understanding of solution curves from a direction field (or slope field).

Definition: For a differential equation dy/dx = g(x, y) the **direction field** (or slope field) is formed by drawing at every point (x_0, y_0) in the xy-plane a small vector of slope $g(x_0, y_0)$.


Direction Fields

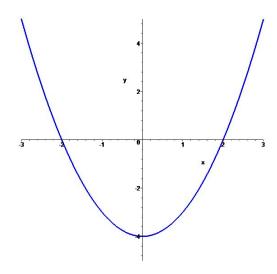
Example:
$$dy/dx = x^2 + y^2 - 1$$

Direction Fields


Example: $dy/dx = y^2 - 4$

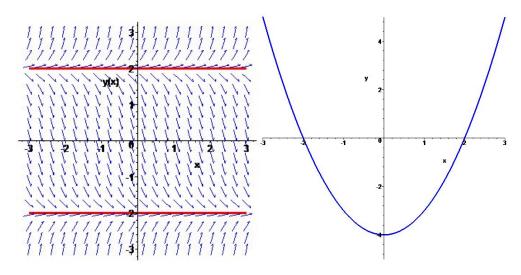
Section 6.3. Equilibria, Stability, and Phase Plots

Definition: An **equilibrium solution** of an DE is a constant solution y = C. The graph of any equilibrium solution in the xy-plane is a horizontal line.

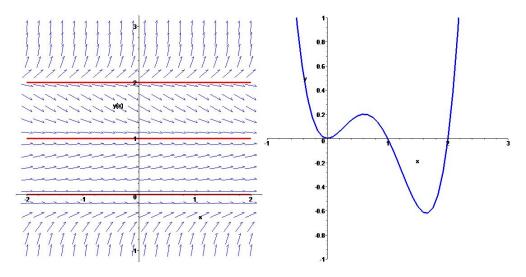

Example: The equilibrium solutions of $dy/dx = y^2 - 4$ are y = 2 and y = -2.

Equilibria, Stability, and Phase Plots

Definition: A **phase plot** of an DE dy/dx = g(y) is a plot of y' vs. y. (A phase plot is a tool for understanding autonomous, first-order DEs.)


Example: The phase plot for $dy/dx = y^2 - 4$ is:

Equilibria, Stability, and Phase Plots


Phase plots can be used to predict the *stability* of equilibrium solutions.

Example: $dy/dx = y^2 - 4$

Equilibria, Stability, and Phase Plots

Example:
$$dy/dx = y^4 - 3y^3 + 2y^2$$

Equilibria, Stability, and Phase Plots

Example: Find all equilibrium solutions to the ODE

$$y' = 10y - 0.2y^2$$

and determine the stability of each by using a phase plot.